| Home | E-Submission | Sitemap | Contact Us |  
J Prev Med Public Health > Volume 40(2); 2007 > Article
Journal of Preventive Medicine and Public Health 2007;40(2): 155-161. doi: https://doi.org/10.3961/jpmph.2007.40.2.155
Developmental Toxicity by Exposure to Bisphenol A Diglycidyl Ether during Gestation and Lactation Period in Sprague-dawley Male Rats.
Un jun Hyoung, Yun Jung Yang, Su Kyoung Kwon, Jae Hyoung Yoo, Soon Chul Myoung, Sae Chul Kim, Yeon Pyo Hong
1Department of Preventive Medicine, Chung-Ang University College of Medicine, Korea. hyp026@cau.ac.kr
2Department of Pathology, Chung-Ang University College of Medicine, Korea.
3Department of Urology, Chung-Ang University College of Medicine, Korea.
OBJECTIVES: Bisphenol A diglycidyl ether (BADGE) is the major component in commercial liquid epoxy resins, which are manufactured by co-reacting bisphenol A with epichlorohydrin. This study was performed to show the developmental effects of prenatal and postnatal exposures to BADGE in male rat offspring. METHODS: Mated female rats were divided into four groups, each containing 12 rats. The dosing solutions were prepared by thoroughly mixing BADGE in corn oil at the 0, 375, 1500 and 3000 mg/kg/day concentrations. Mated females were dosed once daily by oral gavage on gestation day (GD) 6 - 20 and postnatal day (PND) 0 - 21. Pregnant female dams were observed general symptoms and body weight. Also, male pups were observed the general symptoms, body weight, developmental parameters (e.g. anogenital distance, pina detachment, incisor eruption, nipple retention, eye opening, testis descent), organ pathologic changes and hormone levels of plasma. RESULTS: Pregnant rats treated with BADGE died at a rate of about 70% in the 1500 mg/kg/day group and all rats treated with 3000 mg/kg/day died. Body weight, for male pups treated with doses of 375 mg/kg/day, was significantly lower than in the control group at PND 42, 56, and 63 (p<0.05). Evaluation of body characteristics including; separation of auricle, eruption of incisor, separation of eyelid, nipple retention, descent of testis, and separation of the prepuce in the BADGE treated group showed no difference in comparisons with the control group. AGD and adjusted AGD (mm/kg) for general developmental items in BADGE 375 mg/kg/day treated pups tended to be longer than in controls, however, these differences were not statistically significant. Relative weights of adrenal gland, lung (p<0.05), brain, epididymis, prostate, and testis (p<0.01) were heavier than in control in measures at PND 9 weeks. There were no significant changes in comparisons of histological findings of these organs. Loss of spermatids was observed in the seminiferous tubule at PND 9 weeks, but no weight changes were observed. The plasma estrogen levels were similar in the control and treatment groups at PND 3, 6 and 9 weeks. The plasma testosterone levels in the control group tended to increase with age. However, in the BADGE 375 mg/kg/day treated male pups it did not tend to increase. CONCLUSIONS: These findings suggest that BADGE is a chemical that has developmental effects consistent with it being an endocrine disruptor.
Key words: BADGE; Developmental toxicity; Spraguedawley rats; Gestation; Lactation
Editorial Office
#203, 92 Wangsan-ro, Dongdaemun-gu, Seoul 02585, Korea
Tel : +82-2-740-8328   Fax : +82-2-764-8328   E-mail: jpmph@prevmed.or.kr
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © 2022 by Korean Society for Preventive Medicine.                 Developed in M2PI