| Home | E-Submission | Sitemap | Contact Us |  
Korean Journal of Preventive Medicine 1994;27(1): 84-106.
Effects of Hyperoxia on 8-Hydroxydeoxyguanosine Formation in Carbon Monoxide Exposed Rats.
Heon Kim, Soo Hun Cho, Myung Hee Chung
1Department of Preventive Medicine, College of Medicine, Chungbuk National University, Korea.
2Department of Preventive Medicine, Seoul National University College of Medicine, Korea.
3Department of Pharmacology, Seoul National University College of Medicine, Korea.
Hyperbaric oxygen(HBO) therapy for carbon monoxide(CO) poisoning eventually inducing the hypoxia-reoxygenation condition, may produce oxygen free radicals, which forms 8-hydroxydeoxyguanosine(8-OH-dG) by attacking C-8 position of deoxy-guanosine (dG) in DNA. Effects of oxygen partial pressure or duration of HBO therapy with or without CO poisoning on the tissue 8-OH-dG formation were investigated. Male Sprague-Dawley rats were grouped and exposed to air(control group), 4000ppm of CO for 10 to 30 minutes(CO only group), air for 30 minutes after 30 minute exposure to 4000ppm of CO(CO-air exposure group), HBO after 30 minute exposure to 4000ppm of CO(CO-HBO group), or HBO therapy for 10-120 minutes (HBO only group). The 8-OH-dG concentrations in the brain and the lung tissues were measured with high performance liquid chromatography and electrochemical detector (ECD). Average concentrations of the 8-OH-dG of each group were statistically compared. In the brain tissues, 8-OH-dG concentrations of the CO only group, the CO-air exposure group, and the CO-HBO group did not significantly differ from those of the control group. Similar insignificance was also found between the CO-HBO group and the HBO only groups. No appreciable dose-response relationship was observed between the 8-OH-dG concentration and the oxygen partial pressure or the duration of HBO. However, the 8-OH-dG concentrations of the 30 minute CO only group were higher than those of the CO-air exposure group (p-value<0.05). In the lung tissues, there were no significant differences between the 8-OH-dG concentrations of the control group and those of the CO only group, the CO-air exposure group, and the CO-HBO group. However, mean 8-OH-dG concentration of the CO-air exposure group was significantly higher than that of the CO only group under the same CO exposure condition(p-value<0.05). With the duration of CO exposure, the 8-OH-dG concentrations of the lung tissues decreased significantly (p-value<0.05). The concentrations of 8-OH-dG in the lung tissues proportionally increased with the duration of HBO, but no such relation was observed with the oxygen partial pressure. These results suggest that the brain may be more resistant to oxygen free radicals as compared with the lungs, and that oxygen toxicity following HBO may be affected by factors other than oxygen free radicals.
Key words: carbon monoxide; hyperbaric oxygen therapy; oxygen free radical; 8-hydrorydeoxyguanosine
Editorial Office
#203, 92 Wangsan-ro, Dongdaemun-gu, Seoul 02585, Korea
Tel : +82-2-740-8328   Fax : +82-2-764-8328   E-mail: jpmph@prevmed.or.kr
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © 2023 by Korean Society for Preventive Medicine.                 Developed in M2PI