1Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
2Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
3Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
4Department of Epidemiology and Biostatistics, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
Copyright © 2020 The Korean Society for Preventive Medicine
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
CONFLICT OF INTEREST
The authors have no conflicts of interest associated with the material presented in this paper.
FUNDING
None.
AUTHOR CONTRIBUTIONS
Conceptualization: YA, MS. Data curation: YA, MS, MT. Formal analysis: YA, MS. Funding acquisition: None. Methodology: YA, MS. Project administration: MS. Writing - original draft: YA, MS, MT. Writing - review & editing: YA, MS, MT.
Study | Country | Model | No. of reproduction | LCL | UCL |
---|---|---|---|---|---|
Wu et al., 2020 [14] | China | MCMC | 2.68 | 2.47 | 2.86 |
Shen et al., 2020 [15] | China | Dynamic compartmental model | 6.49 | 6.31 | 6.66 |
Liu et al., 2020 [16] | China | Statistical exponential growth model | 2.90 | 2.32 | 3.63 |
Liu et al., 2020 [16] | China | Statistical maximum likelihood estimation | 2.92 | 2.28 | 3.67 |
Read et al., 2020 [17] | China | Mathematical transmission model | 3.11 | 2.39 | 4.13 |
Majumder et al., 2020 [18] | China | IDEA | 2.55 | 2.00 | 3.10 |
Liu et al., 2020 [11] | China | Mathematical model | 1.95 | 1.40 | 2.50 |
Zhao et al., 2020 [19] | China | Statistical exponential growth model | 2.24 | 1.96 | 2.55 |
Zhao et al., 2020 [19] | China | Statistical exponential growth model | 3.58 | 2.89 | 4.39 |
Imai et al., 2020 [20] | China | Mathematical model | 2.50 | 1.50 | 3.50 |
Riou et al., 2020 [21] | China | Stochastic simulations of early outbreak trajectories | 2.20 | 1.40 | 3.80 |
Tang et al., 2020 [22] | China | Mathematical SEIR-type epidemiological model | 6.47 | 5.71 | 7.23 |
Li et al., 2020 [23] | China | Statistical exponential growth model | 2.20 | 1.40 | 3.90 |
Zhang et al., 2020 [24] | China | Statistical maximum likelihood estimation | 2.28 | 2.06 | 2.52 |
Shen et al., 2020 [15] | China | Mathematical model | 4.71 | 4.50 | 4.92 |
Du et al., 2020 [25] | China | Statistical exponential growth model | 1.90 | 1.47 | 2.59 |
Muniz-Rodriguez et al., 2020 [26] | China | Statistical exponential growth model | 3.30 | 3.10 | 4.20 |
Zhou, 2020 [27] | China | SEIR model | 2.12 | 2.04 | 2.18 |
Liu et al., 2020 [28] | China | Statistical exponential growth model | 4.50 | 4.40 | 4.60 |
Liu et al., 2020 [28] | China | Statistical exponential growth model | 4.40 | 4.30 | 4.60 |
Li et al., 2020 [29] | China | Networked dynamic metapopulation model | 2.23 | 1.77 | 3.00 |
Park et al., 2020 [30] | China | MCMC | 3.10 | 2.10 | 5.70 |
Shao et al., 2020 [31] | China | Fudan-CCDC model | 3.32 | 3.25 | 3.40 |
Zhang et al., 2020 [32] | China | SEIQ model | 5.50 | 5.30 | 5.80 |
Lai et al., 2020 [33] | China | Coalescent-based exponential growth and a birth-death skyline method | 2.60 | 2.10 | 5.10 |
Jung et al., 2020 [9] | China | MCMC | 2.10 | 2.00 | 2.20 |
Jung et al., 2020 [9] | China | MCMC | 3.20 | 2.70 | 3.70 |
Sanche et al., 2020 [34] | China | Statistical exponential growth model | 6.30 | 3.30 | 11.30 |
Sanche et al., 2020 [34] | China | Statistical exponential growth model | 4.70 | 2.80 | 7.60 |
Pooled estimate (95% CI) | Q | I2 | T2 |
---|---|---|---|
3.32 (2.81, 3.82) | <0.001 | 99.4 | 1.72 |
Study | Country | Model | No. of reproduction | LCL | UCL |
---|---|---|---|---|---|
Wu et al., 2020 [14] | China | MCMC | 2.68 | 2.47 | 2.86 |
Shen et al., 2020 [15] | China | Dynamic compartmental model | 6.49 | 6.31 | 6.66 |
Liu et al., 2020 [16] | China | Statistical exponential growth model | 2.90 | 2.32 | 3.63 |
Liu et al., 2020 [16] | China | Statistical maximum likelihood estimation | 2.92 | 2.28 | 3.67 |
Read et al., 2020 [17] | China | Mathematical transmission model | 3.11 | 2.39 | 4.13 |
Majumder et al., 2020 [18] | China | IDEA | 2.55 | 2.00 | 3.10 |
Liu et al., 2020 [11] | China | Mathematical model | 1.95 | 1.40 | 2.50 |
Zhao et al., 2020 [19] | China | Statistical exponential growth model | 2.24 | 1.96 | 2.55 |
Zhao et al., 2020 [19] | China | Statistical exponential growth model | 3.58 | 2.89 | 4.39 |
Imai et al., 2020 [20] | China | Mathematical model | 2.50 | 1.50 | 3.50 |
Riou et al., 2020 [21] | China | Stochastic simulations of early outbreak trajectories | 2.20 | 1.40 | 3.80 |
Tang et al., 2020 [22] | China | Mathematical SEIR-type epidemiological model | 6.47 | 5.71 | 7.23 |
Li et al., 2020 [23] | China | Statistical exponential growth model | 2.20 | 1.40 | 3.90 |
Zhang et al., 2020 [24] | China | Statistical maximum likelihood estimation | 2.28 | 2.06 | 2.52 |
Shen et al., 2020 [15] | China | Mathematical model | 4.71 | 4.50 | 4.92 |
Du et al., 2020 [25] | China | Statistical exponential growth model | 1.90 | 1.47 | 2.59 |
Muniz-Rodriguez et al., 2020 [26] | China | Statistical exponential growth model | 3.30 | 3.10 | 4.20 |
Zhou, 2020 [27] | China | SEIR model | 2.12 | 2.04 | 2.18 |
Liu et al., 2020 [28] | China | Statistical exponential growth model | 4.50 | 4.40 | 4.60 |
Liu et al., 2020 [28] | China | Statistical exponential growth model | 4.40 | 4.30 | 4.60 |
Li et al., 2020 [29] | China | Networked dynamic metapopulation model | 2.23 | 1.77 | 3.00 |
Park et al., 2020 [30] | China | MCMC | 3.10 | 2.10 | 5.70 |
Shao et al., 2020 [31] | China | Fudan-CCDC model | 3.32 | 3.25 | 3.40 |
Zhang et al., 2020 [32] | China | SEIQ model | 5.50 | 5.30 | 5.80 |
Lai et al., 2020 [33] | China | Coalescent-based exponential growth and a birth-death skyline method | 2.60 | 2.10 | 5.10 |
Jung et al., 2020 [9] | China | MCMC | 2.10 | 2.00 | 2.20 |
Jung et al., 2020 [9] | China | MCMC | 3.20 | 2.70 | 3.70 |
Sanche et al., 2020 [34] | China | Statistical exponential growth model | 6.30 | 3.30 | 11.30 |
Sanche et al., 2020 [34] | China | Statistical exponential growth model | 4.70 | 2.80 | 7.60 |
Pooled estimate (95% CI) | Q | I2 | T2 |
---|---|---|---|
3.32 (2.81, 3.82) | <0.001 | 99.4 | 1.72 |
LCL, lower control limit; UCL, upper control limit; MCMC, Markov chain Monte Carlo; IDEA, incidence decay and exponential adjustment; SEIR, susceptible, exposed, infected, and resistant; CCDC, Chinese Center for Disease Control and Prevention; SEIQ, susceptible, exposed, infected and quarantined.
CI, confidence interval.