- Assessment of Di (2-ethylhexyl) Phthalate Exposure by Urinary Metabolites as a Function of Sampling Time.
-
Moon Seo Park, Yun Jung Yang, Yeon Pyo Hong, Sang Yon Kim, Yong Pil Lee
-
J Prev Med Public Health. 2010;43(4):301-308.
-
DOI: https://doi.org/10.3961/jpmph.2010.43.4.301
-
-
5,628
View
-
103
Download
-
12
Crossref
-
Abstract
PDF
- OBJECTIVES
In most DEHP exposure assessment studies, single spot urine sample was used. It could not compare the exposure level among studies. Therefore, we are going to represent the necessity of selection of proper sampling time of spot urine for assessing the environmental DEHP exposure, and the association urinary DEHP metabolites with steroid hormones. METHODS: We collected urine and plasma from 25 men. The urine sampling times were at the end of the shift (post-shift) and the next morning before the beginning of the shift (pre-shift). Three metabolites of DEHP {mono(2-ethylhexyl) phthalate [MEHP], mono-(2-ethyl-5-hydroxyhexyl)phthalate [MEHHP], and mono(2-ethyl-5-oxohexyl)phthalate [MEOHP]} in urine were analyzed by HPLC/MS/MS. Plasma luteinzing hormone, follicle stimulating hormone, testosterone, and 17beta-estradiol were measured at pre-shift using a ELISA kit. A log-transformed creatinine-adjusted urinary MEHP, MEHHP, and MEOHP concentration were compared between the post- and pre-shift. The Pearson's correlation was calculated to assess the relationships between log-transformed urinary MEHP concentrations in pre-shift urine and hormone levels. RESULTS: The three urinary metabolite concentrations at post-shift were significantly higher than the concentrations in the pre-shift (p<0.0001). The plasma hormones were not significantly correlated with log-transformed creatinine - adjusted DEHP metabolites. CONCLUSIONS: To assess the environmental DEHP exposure, it is necessary to select the urine sampling time according to the study object. There were no correlation between the concentration of urinary DEHP metabolites and serum hormone levels.
-
Summary
-
Citations
Citations to this article as recorded by
- A Study of the Relationship between Phthalate Exposure and the Occurrence of Adult Asthma in Taiwan
Tsai-Hui Duh, Chih-Jen Yang, Chien-Hung Lee, Ying-Chin Ko Molecules.2023; 28(13): 5230. CrossRef - Effect of the phthalates exposure on sex steroid hormones in the US population
Yuan-duo Zhu, Xu Han, Xin-qi Wang, Tan-xi Ge, Hang Liu, Lin Fan, Li Li, Li-qin Su, Xian-liang Wang Ecotoxicology and Environmental Safety.2022; 231: 113203. CrossRef - The Impairment of Thyroid Hormones Homeostasis after Short-Term
Exposure to Di(2-ethylhexyl)phthalate in Adolescent Male Rats
Sang-Yon Kim, Yeon-Pyo Hong, Yun-Jung Yang Development & Reproduction.2021; 25(4): 293. CrossRef - Biomonitoring of occupational exposure to phthalates: A systematic review
Nadine Fréry, Tiina Santonen, Simo P. Porras, Aleksandra Fucic, Veruscka Leso, Radia Bousoumah, Radu Corneliu Duca, Mounia El Yamani, Marike Kolossa-Gehring, Sophie Ndaw, Susana Viegas, Ivo Iavicoli International Journal of Hygiene and Environmental Health.2020; 229: 113548. CrossRef - Phthalate exposure and male reproductive outcomes: A systematic review of the human epidemiological evidence
Elizabeth G. Radke, Joseph M. Braun, John D. Meeker, Glinda S. Cooper Environment International.2018; 121: 764. CrossRef - Impact of Di-2-Ethylhexyl Phthalate Metabolites on Male Reproductive Function: a Systematic Review of Human Evidence
Birgit Bjerre Høyer, Virissa Lenters, Aleksander Giwercman, Bo A.G. Jönsson, Gunnar Toft, Karin S. Hougaard, Jens Peter E. Bonde, Ina Olmer Specht Current Environmental Health Reports.2018; 5(1): 20. CrossRef - Feminization of the fat distribution pattern of children and adolescents in a recent German population
Christiane Scheffler, Melanie Dammhahn American Journal of Human Biology.2017;[Epub] CrossRef - Serum Phthalate Levels and Time to Pregnancy in Couples from Greenland, Poland and Ukraine
Ina Olmer Specht, Jens Peter Bonde, Gunnar Toft, Christian H. Lindh, Bo A. G. Jönsson, Kristian T. Jørgensen, Jodi Pawluski PLOS ONE.2015; 10(3): e0120070. CrossRef - Associations between serum phthalates and biomarkers of reproductive function in 589 adult men
Ina Olmer Specht, Gunnar Toft, Karin S. Hougaard, Christian H. Lindh, Virissa Lenters, Bo A.G. Jönsson, Dick Heederik, Aleksander Giwercman, Jens Peter E. Bonde Environment International.2014; 66: 146. CrossRef - Di(2‐ethylhexyl) phthalate metabolites as markers for blood transfusion in doping control: Intra‐individual variability of urinary concentrations
E. Solymos, S. Guddat, H. Geyer, A. Thomas, M. Thevis, W. Schänzer Drug Testing and Analysis.2011; 3(11-12): 892. CrossRef - Rapid determination of urinary di(2-ethylhexyl) phthalate metabolites based on liquid chromatography/tandem mass spectrometry as a marker for blood transfusion in sports drug testing
E. Solymos, S. Guddat, H. Geyer, U. Flenker, A. Thomas, J. Segura, R. Ventura, P. Platen, M. Schulte-Mattler, M. Thevis, W. Schänzer Analytical and Bioanalytical Chemistry.2011; 401(2): 517. CrossRef - An estimate of phthalate exposure among term pregnant women living in Bucheon: The pilot study
Tae-Hee Kim, Yeon-pyo Hong, Hae-Hyeog Lee, Soo-Ho Chung, Yun-jung Yang, Sang-yon Kim, Young Lim Kho, Jun-Mo Kim Korean Journal of Obstetrics.2011; 54(3): 140. CrossRef
|